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Analytic Rasterization of Curves with Polynomial Filters

Josiah Manson and Scott Schaefer

Texas A&M University

Figure 1: Vector graphic art of butterflies represented by cubic curves, scaled by the golden ratio. The images were analytically
rasterized using our method with a radial filter of radius three.

Abstract

We present a method of analytically rasterizing shapes that have curved boundaries and linear color gradients
using piecewise polynomial prefilters. By transforming the convolution of filters with the image from an integral
over area into a boundary integral, we find closed-form expressions for rasterizing shapes. We show that a poly-
nomial expression can be used to rasterize any combination of polynomial curves and filters. Our rasterizer also
handles rational quadratic boundaries, which allows us to evaluate circles and ellipses. We apply our technique to
rasterizing vector graphics and show that our derivation gives an efficient implementation as a scanline rasterizer.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

There are two basic ways of representing images: raster
graphics and vector graphics. Raster graphics are images that
are stored as an array of pixel values, whereas vector graph-
ics represent images as collections of geometric shapes, such
as lines, curves, circles, and polygons. Vector graphics are
used in many applications in computer graphics. In 3D, al-
most all geometry is represented in vector form as polygons
or smooth parametric shapes. Even in two dimensions, vec-
tor images are extremely common. For example, nearly all
text is drawn with vector fonts, where letters are stored as
quadratic curves that indicate the transition between the in-
side and outside of the letter. Vector images are also used in
maps, signs, and logos to give a crisp, clear appearance.
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Although many shapes are stored in vector format, dis-
plays are typically raster devices. This means that vector im-
ages must be converted to pixel intensities to be displayed.
A major benefit of vector images is that they can be drawn
accurately at different resolutions. For example, text appears
the same when printed at 600 dpi on paper or on a 72 dpi
screen and the butterflies in Figure 1 are easily drawn at dif-
ferent sizes. Recently, mobile devices have become another
important medium and have generated a renewed interest in
scalable graphics. In particular, websites are often viewed
both on computers with screens thousands of pixels wide and
on phones with screens hundreds of pixels across. Therefore
text, images, and icons must scale gracefully.

There has been a trend to improve the quality of images
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rather than the number of pixels that are drawn. In part, this
trend exists because the rate at which mathematical oper-
ations are performed is increasing faster than the speed of
memory. The biggest improvement to pixel quality comes
from reducing aliasing. Aliasing refers to any artifact that
results from sampling a signal at a frequency less than twice
the highest frequency in the signal. Without changing the
sampling frequency, the only way to reduce aliasing is to
filter the signal to remove frequencies that are higher than
half of the sampling frequency. Multisampling, anisotropic
texture-filtering, mipmapping, and motion blur are all filter-
ing techniques commonly used to reduce aliasing.

When rasterizing curves, another form of aliasing is
present. Most rasterizers only draw polygons and approx-
imate curved boundaries as many-sided polygons. Thus,
aliasing appears both when sampling points on the curve to
form a polygon and from polygon rasterization. Our paper
reduces both forms of aliasing simultaneously by directly
rasterizing curved boundaries using high-order filters. We
show that analytic solutions for pixel values can be found us-
ing polynomial filters to rasterize curved shapes with linear
color gradients. We rasterize shapes with a variety of differ-
ent curves and have closed-form solutions for Bézier curves
of arbitrary degree as well as rational quadratic Bézier
curves, which allows us to rasterize exact circles and el-
lipses. In practice, this set of shapes encompasses most prim-
itives that make up vector images.

1.1. Related Work

The simplest form of rasterization is point sampling, which
simply determines if a point is inside of a polygon or not.
Calculating which polygon, if any, contains an arbitrary sam-
ple can be done using ray casting [App68]. One can also re-
cursively cut the image into quadrants, subdividing around
polygon edges [War69]. More typically, pixel values are cal-
culated a scanline at a time [WREEG67].

The solution to reducing aliasing artifacts is to convolve
the signal with a filter that removes frequencies that are
higher than half the sampling rate. This is equivalent to as-
signing pixel values by integrating the product of the image
and the filter centered at the pixel. Approximating this in-
tegral by quadrature is called supersampling, and as more
samples are used for each pixel, the quality of the rasteriza-
tion improves. If subsamples are also on a regular grid, alias-
ing artifacts can still occur for very high-frequency images.
In ray casting there is significant freedom in sample place-
ment, and several early papers [DW85, Coo86, Mit87] ana-
lyze image sampling patterns. These works show that sam-
ples should be random but have uniform density, and there
is renewed interest in such sampling patterns [JC99, HC06,
Kal07,GM09, Weil0,Fat11,EDP*11]. There is also research
on how to optimize the sampling pattern and weights simul-
taneously [LAO6].

Calculating prefiltered pixel values requires an integral

over areas of an image, and accurate approximations require
numerous point samples, regardless of the sampling pattern.
Calculating area integrals is complicated, especially when
taking occlusion into account, but calculating line integrals
is more tractable. Several papers [GT96, JPO0, GBAMI11]
have described methods of approximating area integrals by
calculating a one dimensional quadrature over line samples
that are computed analytically. This approach reduces the di-
mensionality of the problem by one, and yields a rasteriza-
tion with fewer artifacts from the same number of samples.

One can also evaluate area integrals exactly. One of the
first methods to do so [Cat78] solves both the visibility and
integration problems simultaneously. The method clips poly-
gons to pixels, and then against each other, so that the re-
maining list of polygons in a pixel are all completely visi-
ble. It then sums the areas of the polygons in the pixel times
their color, which is equivalent to sampling with a box filter.
Some other methods simplify cutting to pixels by first cut-
ting polygons into trapezoids aligned with scanlines [GT92].
These trapezoids are easier to cut into pixels than polygons
and one can easily find the area of a trapezoid.

Duff uses trapezoid decomposition to evaluate polynomial
filters over polygons [Duf89]. Our method is more general,
because we are able to rasterize curved boundaries in addi-
tion to polygonal boundaries. Our derivation of closed-form
rasterization equations also leads to a different rasterization
algorithm, because Duff integrates over areas perpendicu-
lar to the scanline, whereas we integrate over the boundary
along the scanline.

Some methods rasterize polygons with radial filters. An
early method [Cat84] clips polygons to pixels and adds each
edge’s contribution using a radial filter. If an edge forms a
triangle with the center of the filter, that triangle is split into
two right triangles. Each right triangle is parameterized by
two values that index a lookup table to find the edge’s con-
tribution. A more recent algorithm [LCSWO5b] removes the
need of clipping polygons to pixels by taking the modulo of
final pixel values. The method also has analytic solutions for
polynomial filters, but cannot use filters with negative val-
ues because of the modulo operation. The authors published
a paper describing positive filters that are suitable for their
method [LCSWO05a].

There are also some rasterizers that are difficult to clas-
sify. One method approximates the rasterization of self-
intersecting polygons [Doa04]. In this method, the con-
tours within pixels that contain intersections are simpli-
fied and clipped against other contours. Another method
calculates analytic rasterizations of shapes filtered by box
splines [McC95]. Filters must be positive, and the method
only rasterizes triangles. Auzinger et al. [AGJ12] analyti-
cally rasterize antialiased triangles and tetrahedra with linear
data defined over the simplices. We also handle linear gra-
dients, but we analytically rasterize complex, curved, two-
dimensional shapes. A process similar to polygon rasteri-
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zation has also been used to calculate surface irradiance in
a raytracer by using Stokes’ theorem to evaluate incoming
light from polygonal light sources [CA00, CAO1].

The main contribution of our paper is prefiltered, an-
tialiased rasterization of shapes with curved boundaries.
There has been some work in directly rasterizing shapes
with curved boundaries, but most rasterizers simply approxi-
mate curved boundaries by subdividing the curves into many
sided polygons [Cat74]. One of the first papers to rasterize
curved shapes [CJ88] accurately determined if pixels were
inside or outside of the region bounded by the curves, but
only performed point sampling for rasterization.

Most antialiased rasterization methods estimate the dis-
tance to the boundary in some way [FF97, LB0S5, QMKO06,
QMKO08, NHO8] and approximate a radial filter by setting
pixel values based on the distance to the boundary. Using
distance to approximate a radial filter is only exact for line
segments when no vertices are in the filter’s support and
works especially poorly between curves that are within a fil-
ter diameter of one another.

Another method [MS11] calculates exact filtering of
shapes bounded by Bézier curves. The method is reminiscent
of the recursive algorithm of Warnock, because the method
calculates wavelet coefficients over a quad-tree to produce
a filtered rasterization of the shape. If the scaling func-
tion approximates a low-pass filter, such as a box filter, the
method performs antialiasing. Unfortunately, this method
only works with wavelet filters, and most common filters
other than the box filter are not wavelets. Our method com-
bines the best aspects from Duff’s work [Duf89] and wavelet
rasterization [MS11] because our method has closed-form
solutions to polynomial curves sampled using polynomial
filters. In addition, we show how our derivation can rasterize
shapes with rational quadratic boundaries such as circles and
shapes with linear color gradients in their interior.

2. Rasterizer

Rasterization is the process of sampling an image /(x,y)
defined by a set of closed shapes, where each shape M; is
defined by a set of boundary curves dM;. We assume that
the input does not contain overlapping shapes. If this is
not the case, we can preprocess the input to remove over-
laps [HWO7]. We define I(x,y) = ¥;I;(x,y) as the sum of
images of each shape I;(x,y), where each shape has color
ci(x,y) inside of M; and is zero outside. To remove aliasing,
we prefilter the image by convolving (x,y) with a low-pass
filter i(x,y) prior to point sampling, which is equivalent to
taking the inner product of the image /(x,y) with the filter
centered at each pixel. We explain how to rasterize the image
of a single shape and drop the shape index i in the remainder
of the paper because the final image is just a sum of shape
images. We calculate the value of a pixel located at /x, fy by
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the area integral

//Rz I1(x,y)h(x — bx,y — £y) dx dy.

We can simplify the expression by changing the domain of
integration to be only over the interior of M because the im-
age is zero outside of the boundary.
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The divergence theorem relates an integral over the bound-
ary of a domain to an integral over the domain by

f oy sras= [ -ray iy

where the unit normal of the shape is given by n(s) and the
domain’s boundary is given by the arc-length parameterized
curve p(s). Therefore, if we find a vector function F(x,y)
whose divergence is equal to f(x,y) = c(x,y)h(x — b,y —
£y), then we can evaluate Equation 1 as a boundary integral.

Because divergence is a sum of differentials, we find
F(x,y) by integrating f(x,y) and we parameterize solutions
for F(x,y) by o, such that

(=) [* . f(uy) du
Flxy) = ( a7 P (o) du )

Thus, we have converted the rasterization problem from
integration over an unknown interior to integration over a
known boundary. Wavelet rasterization [MS11] has a similar
derivation, but uses the inner product to calculate projections
onto a wavelet basis. In the case of wavelets, it is possible to
choose o so that F(x,y) has compact support, but compact
support is impossible for arbitrary polynomial filters. How-
ever, if we choose a = 0, then F(x,y) has infinite support
only in the direction of the scanline, which we will exploit
during rasterization in Section 2.1.

The unit normal of the curve is defined as n(s) =
p(s)/|lp’ (s)||, where the direction perpendicular to the

o= ().

We use the notation that p’(s) is the derivative of p(s) with
respect to s, while x and y subscripts, respectively, refer
to the first and second components of a vector quantity.
Changing variables from an arc-length parameterization ds
to a uniform parameterization dt weights the differential by
ds = ||p’(¢)|| dt, which simplifies our expression because
1 ’

n(s) ds = % = pt(t) dt. The dot product be-
tween vector functions also simplifies to a scalar product,

Frew)-p 0 di= fEGOWO @ @

that uses only the x-component, Fx(x,y), of F(x,y) because
the y-component, Fy(x,y), is zero when o = 0. Note that
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Figure 2: A filter f(x,y) is shown on the left and its inte-
gral in the x-direction Fx(x,y) is shown on the right. The
graphs are plotted over the filter’s support. In Fx(x,y), val-
ues remain constant in the direction of integration beyond

f(x,y)’s support.

most boundary curves p(t) are defined piecewise, and it is
trivial to sum the integral of each piece of the curve to eval-
uate Equation 2. Differentiation, integration, multiplication,
and function application are closed under polynomials; so if
h(x,y), c(x,y), and p(t) are polynomial, the entire expres-
sion evaluates to a polynomial. An example of f(x,y) and
its integral Fx(x,y) are shown in Figure 2. In this figure, it is
clear that the support of Fx(x,y) extends beyond the support
of f(x,y) in the positive x-direction only, so that the value of
a pixel depends on the boundary to the right of the pixel.

There are a variety of filters A(x,y) to choose from. Some
filters, such as the box, tent, and Gaussian filters, blur the
image to remove aliasing. There are also frequency bandpass
filters that approximate the sinc function. The sinc function
has too large of a support to be practical, so sinc is typ-
ically windowed to produce tensor-product filters such as
the Lanczos and Mitchell-Netravali [MN88] filters. In two-
dimensions, a circular bandpass results in a radial jinc filter.
If a filter is not already polynomial, we can approximate it
by a piecewise polynomial. We approximate windowed jinc
and Lénczos filters by piecewise cubic and bicubic polyno-
mials respectively with c® continuity aligned to pixel bound-
aries. This approximation produces images that are visually
indistinguishable from images of the original filters.

2.1. Scanline Algorithm

To rasterize an image, we evaluate Equation 2 using the
curves that are in the support of Fy(x,y), which is finite in y,
but is infinite in the positive x-direction. This directionality
of infinite support leads to a scanline rasterization algorithm
that evaluates pixels from right to left (although changing
the direction of integration yields a traditional left to right
rasterization algorithm). We assume that the filter is repre-
sented as a piecewise polynomial where the pieces align to
the pixel grid. Since the polynomial pieces do not overlap,
we can write the filter as a sum of polynomial pieces. In Fig-
ure 3, we show the decomposition of a one-dimensional tent
filter into multiple pieces. We show the full filter and its inte-
gral on the top row of the figure, below which, we show the
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Figure 3: We decompose a filter f(x) into pixel sized pieces
and evaluate each piece separately. The integral over f(x)
is equal to one, but the integral over each piece is not.

f'(x)
fAx)

decomposition of the filter into pixel-sized pieces and the
integrals of the pieces. Each piece (i) (x,y) is defined over
the (x,y) € [0,1)? domain and is indexed by i, j so that

hy) =LY =iy = j). 3)
i

We then define the colored filter pieces over the same do-
main as £ (x,y) = c(x + lx,y + £,)h") (x,y), with inte-
grals Fx(w)(x,y) = ffoof<i’-i> (u,y) du. Because our filter is
piecewise polynomial with polynomial pieces that align to
the pixel grid, we cut boundary curves to the pixel grid. With
proper care, solving for the points to cut polynomials is ro-
bust even for degenerate curves [B1i05, Bli07]. We index cut
curves by the cell Ay, Ay so that each curve segment

p* M) (1) = p(r)n ([0, 1)’ + (7“"’7‘>’)> ~ (o)

is within the same [0, 1)> domain as the filter pieces. We can
evaluate each pixel sized piece of the filter independently
and sum the results to evaluate a pixel with indices Zx, £y by

1 .. . . i i
VY[R (pEtib i () pltib ) oy ar. ()
L )

Because summation is commutative, the order in which we
evaluate Equation 4 does not matter and allows us to evalu-
ate each curve, scanline, and filter piece in parallel. Given a
curve pihoh) (¢) and filter piece f° (0-)) (x,y), we can see from
Equation 4 that p(h,%»)(t) = plbtitit) (t), and we there-
fore add the contribution from curve p®M) (1) to the pixel
(Ax —i,Ay — j). Our only constraint is that we must evaluate
each filter piece in scanline order due to the infinite support

of Fx(i’j) ().

Figure 4 illustrates the process of rasterizing a single piece
of f (©.J) (x,y). We show a scanline consisting of four pixels,
where each row shows how we evaluate the pixel drawn in
orange with the extended support of FX(I’J ) (x,y) drawn in red.
The figure shows evaluation of a single curve that we draw in
blue, with normals to indicate the curve’s orientation. When
the curve is within the support of the filter piece (top row),
we evaluate of the curve integral and immediately update the

(© 2013 The Author(s)
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Figure 4: The thick box outlines show which pixel is being
evaluated for a filter piece f<i’j) (x,y). Evaluating a curve
has two possible values: one within the filter piece; and
one for all pieces to the left, found by setting the curve’s
x-coordinate equal to one.

pixel value. All pixels left of the curve (bottom rows) will
have the same value added because Fx<l’j >(x, y) is constant
with respect to x in the red region. We efficiently propagate
this constant contribution by evaluating the curve once to
update an accumulator that we add to remaining pixels in
the scanline. Furthermore, we can simplify Equation 2 for
propagated values by treating the curve as a line segment
that connects the curve’s end points and has x-coordinates
equal to one. Before processing a scanline, the accumulator
is initialized to zero outside of the shape. The orientation of
a curve automatically adds color as the filter moves inside
the shape’s boundary and subtracts color as the filter moves
outside of the shape.

Rasterizing shapes with linear color gradients is almost
the same as rasterizing shapes with constant color. The only
difference is that in Equation 4, Fx(l’j )(x, y) depends on the
pixel coordinates {x, ¢, when c(x,y) is linear. We define the
color of the shape as ¢(x,y) = Cy + C1x + Cyy in the shape’s
reference coordinate system. This means that the difference
in value when moving from a pixel (¢x,fy) to (€x — 1,4y) is

¢ [ 1 wy) du 5)
—o0

The integral of R(0-d) (x,y) is constant to the right of the filter
piece, so we augment the accumulation buffer with a linear
term that stores the value of Equation 5. The modification to
our algorithm is simply that after processing a pixel, we add
the linear accumulation term to the constant accumulation
term. This process is easily extended to general polynomial
color functions, where a quadratic term is accumulated into
a linear term, and so on.

2.2. Implementation

We have described a general framework for a rasterization
algorithm. The key idea is that the equations we use for ras-
terization naturally lead to efficient evaluation by rasterizing
in scanline order. Rasterization using our method is easily
parallelizable. Cutting all of the curves to pixels is done as

(© 2013 The Author(s)
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Figure 5: Examples of (a) point sampling, (b) 16x MSAA
tent filtering using an ATI Radeon HD 5700, (c) analytic tent
filtering.

a batch process prior to rasterization, where curves are dis-
tributed between processors. Each scanline is then evaluated
in parallel, as is each polynomial piece of a filter. Note that
this parallel implementation processes each curve a number
of times equal to the area of support of the filter. It is also
possible to write an efficient serial implementation that scans
over the entire image once but maintains an array of accumu-
lation values, one for each polynomial piece, and processes
each curve once.

3. Results

Closed-form solutions are available for a wide variety of in-
teresting filters and curves and we show that high-order fil-
ters reduce aliasing artifacts in several test images. We also
show that calculating closed-form solutions of the rasteriza-
tion equation is competitive in speed with approximate solu-
tions while generating higher-quality images by comparing
our implementation to other rasterizers.

The advantages of using high-order filters are most appar-
ent in images with high-frequency details. We show rasteri-
zations of test patterns that are prone to aliasing in Figures 5
and 6, where we rasterize the images using different filters.
Figure 5 shows lines that are at a frequency of 1/4 lines per
pixel at the top to 2 lines per pixel at the bottom. This figure
illustrates the difference between point sampling and super-
sampling with a GPU (ATI Radeon HD 5700) versus ana-
Iytically rasterizing images. Image (a) is point sampled and
aliasing is clearly visible. Both (b) and (c) are sampled us-
ing a tent filter, but (b) is supersampled with 16 points per
pixel and has obvious aliasing, whereas exact evaluation of
(c) using our method suppresses most aliasing.

Figure 6 shows differences between analytically evaluated
filters of increasing quality. The top row shows examples
using linear curves, while the bottom shapes are made of
quadratic curves. As the order of the filter increases, the tran-
sition between detailed and blurred regions becomes sharper
and aliasing is reduced. The box filter (a) is clearly the worst
filter, because it does not remove high frequencies very well,
which results in obvious aliasing patterns. The tent filter (b)
is noticeably better than the box filter. Although some high
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Figure 6: Analytic rasterizations using different filters are shown. The first row uses radial triangles and the second row uses
rings of quadratic curves. The columns show the filters: (a) box, (b) tent, (c) Mitchell-Netravali, (d) Ldnczos 3, and (e) radial 3.

Fig. 5 Fig. 6 (top)  Fig. 6 (bottom)

AGG 2.73 0.25 0.35

Cairo 5.35 0.57 2.34

Wavelet 3.84 0.42 3.14

Box 1.23 (0.60) 0.14(0.07) 0.37(0.17)
Tent 2.36 (0.83) 0.27(0.12) 0.75 (0.26)
Q. B-spline || 9.60(3.29) 1.02(0.31) 4.45 (1.26)
Mitchell 21.2(6.90) 2.26(0.79) 37.0(11.4)
Lénczos 2 26.3(7.64) 2.71(0.96) 27.6 (7.54)
Lanczos 3 48.7(16.0) 5.37(1.88) 115.(37.7)
Radial 2 21.2(5.70) 2.31(0.78) 17.1(5.02)
Radial 3 42.9 (14.1) 4.64 (1.68) 45.8 (15.6)

Table 1: Times to rasterize various images, measured in mil-
liseconds. AGG, Cairo, and wavelet rasterization all use a
box filter. Serial times are followed by parallel times using
Sfour processors in parentheses.

frequencies still pass in the top image, the center of the cir-
cle is much closer to a uniform color. A disadvantage of the
tent filter is that low frequencies are attenuated too much,
which is visible as blurriness. The Mitchell-Netravali filter
(c) appears slightly better than the tent filter. The Lanczos 3
(d) and radial (e) filters both have a radius of 3, but (e) is the
only filter that is not a tensor product. In (d) it is easy to see
the square fall-off of aliasing in the bottom picture compared
to the circular fall-off in (e).

Our method is not restricted to polynomial curves and can
theoretically be applied to any boundary defined by paramet-
ric curves. Closed-form expressions are not guaranteed for
all curves but do exist for rational quadratic Bézier curves.

Figure 7: We demonstrate rasterization of rational Bézier
curves of varying sizes in a 128 x 64 pixel image.

These are an important class of curves because they include
all circular and elliptical arcs. We show an Apollonian gasket
composed of rational quadratic Bézier curves that we evalu-
ate exactly using a box filter in Figure 7.

We present rasterization timings for the patterns in Fig-
ure 5 (128 pixels) and Figure 6 (642 pixels) in Table 1. Fig-
ure 5 contains 1024 lines in 256 quads, Figure 6 (top) con-
tains 96 lines in 32 triangles, and Figure 6 (bottom) contains
32 concentric rings made out of a total of 128 non-rational
quadratic curves and 64 radial lines. We ran tests on an In-
tel Core 17 870. The first row contains the times taken by
Anti-Grain Geometry (AGG), which is a highly optimized,
high-quality software rasterizer. The second contains tim-
ings for Cairo, which is a rasterizer used in several large
software projects. Both AGG and Cairo use box filtering and
approximate curved boundaries by polygons, for which we
used their default tolerances to subdivide curves. The third

(© 2013 The Author(s)
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Figure 8: Speedup for different numbers of threads on a
four core Intel Core i7 870. The ideal speedup is shown as
a dashed black line, and the speedup for different filters is
shown as solid lines of different colors.

row contains timings for wavelet rasterization [MS11] us-
ing the authors’ implementation, which analytically raster-
izes piecewise polynomial curves using a box filter. The re-
maining times are from our method using different filters.
We use a serial implementation of our algorithm to compare
with the other methods and include times for our parallel im-
plementation running on four processors in parentheses. The
Mitchell-Netravali and Lanczos 2 filters are both cubic ten-
sor product filters, but have a different number of zero terms.
The Radial 2 filter has the same support but has fewer coef-
ficients compared to the cubic tensor product filters because
we use a filter of cubic total degree.

The other methods that we compare against rasterize poly-
gons using a box filter, so our box filter produces the same
output as them for Figure 5 and Figure 6 (top). AGG and
Cairo approximate quadratic and cubic curves as polygons,
so we show the time for these approximate rasterizations in
bold. Comparing against AGG, we see that the times to ras-
terize shapes are similar, even though we compute an ana-
lytic rasterization of quadratic curves rather than a polygonal
approximation. Cairo is slower than AGG and our method,
because it is more generic and is designed for more compli-
cated rendering operations.

Unlike the other three methods, our technique can analyt-
ically filter images using higher order filters. As the order of
the filter increases, so does the computation time, which is
approximately linear in the area sampled by the filter. The
tent filter is interesting because it provides a significant im-

(© 2013 The Author(s)
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1/2 Pixel

Figure 9: In the image on the left, curves are approximated
by polygons within a tolerance of% of a pixel, while the
image on the right is calculated exactly.

provement in image quality, but takes only twice as long to
compute as a box filter and remains competitive in time with
AGG, which uses a box filter. High-order filters are expen-
sive to compute, but may be acceptably fast for final, pro-
duction renders.

Figure 8 shows the speedups we achieve rendering Fig-
ure 11 with a parallel implementation of our algorithm us-
ing OpenMP to split calculations between different numbers
of threads on a four core system. The image contains 1,577
cubic curves that we rasterized into a 316 x 613 pixel grid.
Speedups vary based on filter width. Some filters like the box
filter are simple enough that the overhead of parallelization
prevents ideal scaling. Nevertheless, with four cores we still
achieve a 2.4x speedup. As the size of the filter increases,
Equation 2 requires more operations and our speedup ap-
proaches the perfect scaling relationship. In the case of a
quadratic B-spline filter, we achieve a 3.5x speedup over
our serial implementation.

A common approach to handling curved boundaries is to
approximate curves by line segments. However, this form
of approximation produces its own aliasing artifacts, even
when performing analytic filtering. For example, Figure 9 is
composed of quadratic curves. On the left, we subdivided
curves into line segments so that they are within 0.5 pixels
of the actual curve. On the right, we show curves that are
rasterized with exact formulas for quadratics. In both cases,
we use our method for analytic rasterization so that the dif-
ferences are only due to approximating curves by line seg-
ments. Notice that a black ring appears in the left image and
that the aliasing patterns appear polygonal rather than round.
It is also possible that a topological problem can occur when
subdividing curves into line segments because, even if in-
put curves do not intersect, the line segments approximating
those curves may intersect. Determining the level of subdivi-
sion required to prevent line segments from intersecting can
be complicated and expensive.

We show examples of SVG files that contain cubic curves
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Input Inkscape

Box Tent

BSpline2 Mitchell

Figure 10: A vector graphic image of an icon with linear
gradients and cubic Bézier curves. On top we show the vec-
tor image, with rasterizations at 642 resolution using box,
tent, quadratic B-spline, and Mitchell-Netravali filters be-
low.

in Figures 1, 10, and 11. Figure 1 shows a vector image that
is scaled by irrational values. There are 60 butterflies, and
each butterfly contains 452 cubic curves that form two col-
ored shapes so that there are 27,120 cubic curves in total.
Figure 10 shows an example of an icon made from 108 cubic
curves that incorporates linear gradients and text. We show
the input vector image on the top left, and show a 64> pixel
rasterization from Inkscape and from our implementation of
box, tent, quadratic B-spline, and Mitchell-Netravali filters.
Note that many renderers, including Adobe Acrobat, have
problems rendering the curved boundary between the lin-
ear color gradients correctly. This problem is visible in the
Inkscape image as a bright halo. Hence, even the vector in-
put may appear to have artifacts depending on your choice
of viewing software. Finally, Figure 11 shows the effect of

Box Mitchell Radial

Figure 11: An image rasterized using a box filter (left),
Mitchell-Netravali filter (center), and radial filter of radius
3 (right). A zoomed-in section of the image is shown below
each high-resolution image to show differences in pixel val-
ues.

different filters on a detailed vector image without Moiré ar-
tifacts that is made of 1,577 cubic curves.

4. Conclusions and Future Work

With the processing power of video cards and the variety of
display devices increasing in tandem, accurate rasterization
of shapes is both more desirable and achievable. In this pa-
per, we have revisited the theory behind rasterization, and
described a new approach for finding analytic solutions for
pixel colors using a variety of filters when rasterizing several
types of curves that are commonly used in vector graphics.

Rasterization is a complex subject and remains an inter-
esting topic for research. There are a couple of extensions to
our method that may be useful. The curves and color gradi-
ents described in our paper are closed under affine transfor-
mations, but rasterizing three-dimensional scenes adds com-
plicated occlusions and requires a projective transformation.
For example, Gouraud shading defines linear color functions
over triangles, but Gouraud shaded triangles have color func-
tions that are rational with respect to screen coordinates after
projection. Closed-form expressions of Equation 1 may ex-
ist for rational functions, but are certainly not polynomial.
Rasterization of textured triangles is even more difficult. It
could also be useful to apply our method to higher dimen-
sions, for example, to calculate motion blur by integrating
over a three-dimensional domain.
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