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Parameterization-Aware MIP-Mapping
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Figure 1: From left to right, we show the input texture (10242), then the monster frog model drawn with the full-resolution
texture and the fourth mip-levels (642) downsampled with a box filter that ignores texels that are not used in the model in
addition to mipmap guttering and our parameterization-aware bilinear filter. The tent filter does not preserve details as well as
our method and allows the background color of the texture to bleed in at texture seams.

Abstract
We present a method of generating mipmaps that takes into account the distortions due to the parameterization
of a surface. Existing algorithms for generating mipmaps assume that the texture is isometrically mapped to the
surface and ignore the actual surface parameterization. Our method correctly downsamples warped textures by
assigning texels weights proportional to their area on a surface. We also provide a least-squares approach to
filtering over these warped domains that takes into account the postfilter used by the GPU. Our method improves
texture filtering for most models but only modifies mipmap generation, requires no modification of art assets or
rasterization algorithms, and does not affect run-time performance.

Categories and Subject Descriptors (according to ACM CCS): Three-Dimensional Graphics and Realism [Computer
Graphics]: Color, shading, shadowing, and texture—

1. Introduction

Movies and games are filled with three-dimensional ob-
jects represented as triangle meshes. The geometry of these
meshes is important, but much of the detail and interest of
an object comes from the variation of colors on its surface.
Texture mapping provides a way of annotating surfaces with
information such as color. Typically the color at any point
on a model is calculated from an image, called a texture,
that is applied to the object. Textures are stored as two-
dimensional grids of color samples (texels), but there is no
obvious way of automatically mapping a point p ∈ R3 on

a three-dimensional surface to a point t ∈ R2 in a texture.
Instead, a parameterization Θ : R3→ R2 of the object’s sur-
face is usually supplied by an artist, where the surface of the
object is cut into separate charts that are flattened into the
plane. For triangle meshes, Θ is typically encoded as texture
coordinates associated with each vertex of the triangles.

The projection of a point p on an object’s surface to a
pixel s on the screen is given by Φ : R3 → R2. To draw a
textured surface, the graphics card (GPU) samples the value
in the texture associated with a triangle at the coordinate
Θ◦Φ

−1(s) in order to determine the color of the pixel. How-
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ever, a pixel on the screen may correspond to a large area of
the texture for distant objects, which necessitates filtering to
avoid aliasing. Depending on how distant an object is, a filter
h may integrate over many texels. Rather than compute ex-
act filter integrals, GPUs use precalculated downsamplings
of the texture that are stored in a mipmap [Wil83].

Filters can be expensive to evaluate with no distortion,
but evaluation is even more complicated over the distorted
support of h(Θ◦Φ

−1(s)). Several algorithms have been de-
signed to improve the quality of texture filtering since the
invention of mipmaps. The simplest improvement is to gen-
erate mipmaps using more advanced filters derived from sig-
nal processing. More recently, researchers have focused on
designing anisotropic filters that can be evaluated in real-
time.

We solve a problem that is related to, but separate from,
anisotropic filtering. Anisotropic filtering calculates texture
samples by transforming the filter using a first-order approx-
imation of Θ ◦Φ

−1, which is the affine transform defined
by the Jacobian of Θ ◦Φ

−1. Describing the local distortion
by an affine transformation is correct for a single point, but
is only approximate when integrating over the support of h,
unless the distortion from screen to texture space, Θ◦Φ

−1,
is uniform. GPUs typically approximate integration of h by
sampling from a mipmap. However, at higher mip-levels,
texels contain many triangles and the assumption of unifor-
mity of Θ◦Φ

−1 is violated.

We assume that the parameterization of the model is fixed
and improve the texture quality without modifying the model
or the base texture. Our observation is that we can correct
for nonuniform distortion of Θ during mipmap generation
and improve texturing, with or without anisotropic sampling.
Our method uses the fact that Θ is view-independent to pre-
compute mipmaps that prefilter the texture to correct for the
nonuniformity of the parameterization of a surface in the
support of h. Our method calculates corrects for parametric
distortions introduced by Θ and show how to optimize tex-
ture reproduction when sampled trilinear postfilter. We solve
the large-scale problem where parameterization changes be-
tween triangles, while anisotropic filtering solves the small-
scale problem of sampling points on the screen. Figure 1
shows an example of the improvement obtained by using our
method instead of tent filtering. The left model is drawn us-
ing the 10242 input texture, while the center and right im-
ages are drawn with 642 tent and parameterization-aware
mipmapped (PAM) bilinear filters.

Anisotropic filtering on a GPU still benefits our method
because anisotropic filtering adapts to changes of Φ, which
are only known at run-time. Thus, anisotropic filtering and
our method complement each other. We generate optimized
mipmaps as a preprocessing step and improve image quality
with no change to art assets or rasterization algorithms and
no cost to run-time performance. As an added benefit, our
method automatically ignores the unused portion of the tex-

ture that forms the background color, which prevents color
bleeding at higher mip-levels.

2. Related Work

Mipmapping is a classic technique for improving the perfor-
mance and quality of texture filtering for real-time render-
ing. The goal of mipmapping is to accelerate the calculation
of downsampled images by arbitrary scales by interpolating
between precomputed power-of-two scalings of an image.
Trilinear mipmapped texture filtering was first published in
1983 [Wil83] and derives its name from the Latin phrase,
“multum in parvo,” which means “much in little.” Mipmap-
ping has had hardware implementations since the first textur-
ing hardware, and even in the first consumer graphics card,
the Voodoo 1, which was introduced in 1996.

The original description of mipmapping generated down-
sampled images using a box filter, but one can easily imagine
using higher-order filters at each level, such as in a Gaussian
pyramid [Bur81]. An obvious way to improve the quality of
mipmapping is to use high-quality antialiasing filters to gen-
erate the images at each mip-level. Shannon’s sampling the-
ory [Sha49] states that, before sampling, a signal should be
convolved with the sinc filter to remove frequencies higher
than the sampling frequency. Convolving an image with sinc
is expensive to compute because sinc has infinite support, so
sinc is often windowed. The Lanczos filters are examples of
windowed sinc filters.

Hummel [Hum83] described optimal prefilters for
linearly-dependent postfiltering bases such as tent and cubic
B-splines. However, Hummel only considers functions over
an infinite, uniform grid. Kajiya and Ullner [KU81] solve
a least-squares problem where intensities are constrained to
be in the range [0,1] to render fonts on CRT displays where
the pixel response is approximately Gaussian. Least-squares
downsampling [ZZZ∗11] is a method for finding a down-
sampling that optimizes over point samples. In contrast, our
work finds a downsampling that is optimized over all mip-
levels at the same time to match the postfiltering performed
by GPUs, handles boundary effects of the image and chart
boundaries, and accounts for nonuniform parameterization
of the surface during filtering.

Mipmaps work well for sampling high-frequency tex-
tures, but do not properly sample triangles with oblique pro-
jections onto the screen. Heckbert [Hec89] described the
problem of filtering a warped image in its full generality be-
fore suggesting two sampling approaches. If the warping is
an arbitrary function, one can sample the image at a high
resolution and apply a postfilter to resample at the target res-
olution. This approach is commonly referred to as supersam-
pling, and there has been research on the best sampling pat-
terns to use [DW85, MN88, EDP∗11, Fat11]. Postfilters can
reduce aliasing or trade aliasing for noise, but because in-
formation about the input image and warp is not used, they
cannot generate a band-limited signal.
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The second approach is to approximate the warp as being
affine within the support of the filter. The warp is defined
by Θ ◦Φ

−1, and the Jacobian J(Θ ◦Φ
−1) at a single point

provides a first order approximation of the warp as an affine
transformation. Since the initial description of mipmapping,
most subsequent work has been on how to sample images
with affine transformations of filters. Elliptical weighted av-
erages (EWA) [GH86] assumes that the pixel sampled on a
screen has a radial Gaussian filter. Lin et al. [ZLW06] pro-
vide a similar method that samples with a tensor product of
windowed sinc functions. Another approach is to decom-
pose an anisotropic filter into a weighted sum of isotropic
filters that approximate EWA. Feline [MPFJ99] is an ap-
proach for estimating an elliptical Gaussian filter by either
several radial Gaussian filters or by trilinear filters. A recent
paper [MP11] has extended the idea of Feline by building
filters from the anisotropic samples provided by GPUs.

There are several approaches to accelerating anisotropic
texture filtering. Summed area tables [Cro84] can be used
to calculate the contribution from constant rectangular fil-
ters. Texture potential mipmapping [CS00] is a multires-
olution extension of texture potential mapping [CS97],
which stores summed line tables rather than area tables for
quickly approximating affine transformations of box filters.
Ripmaps [Hec89] are a simple extension of mipmaps, where
nonuniform, power-of-two scalings in x- and y-coordinates
are precomputed. While mipmaps take only 4/3 of the origi-
nal image’s space, ripmaps take four times as much space to
store. Ripmaps represent scaling in the x- and y- directions
well, but are identical to mipmaps along the diagonal. An-
other method for precalculating anisotropically filtered noise
textures is to decompose a texture into directional frequency
bands [GZD08]. During sampling, the authors approximate
the filtering kernel by taking a linear combination of the tex-
ture’s frequency components.

Given a filter definition, one should take into account how
the texture is mapped onto the surface of a 3D model. A
common problem is that colors from unused portions of the
texture can bleed through texture seams on the surface of
the object. Guttering [WWOH08] can reduce this problem
by creating an extended border of similar color around the
chart boundary. The process of guttering can be automated
through a push-pull algorithm [GGSC96, SSGH01] where
texels outside of texture charts are not used during mipmap
creation. Then, the image is successively upsampled by fac-
tors of two from the lowest resolution, overwriting only the
unused texels.

One can also circumvent the problem of surface parame-
terization by storing textures on the surface itself, such as in
Ptex [BL08] and Mesh Colors [YKH10]. Both of these meth-
ods implement mipmapping and anisotropic filtering calcu-
lated directly on a surface. Alternately, textures can be stored
in three-dimensional space around a surface [BD02, LH06]
to avoid surface parameterization. In general, these meth-

ods tend to be slower than typical texturing, either because
they are more complicated or because they have no hardware
support. In contrast, our method improves texture sampling
when using the native trilinear sampling implemented by
GPUs. Some methods [PCK04,RNLL10] also remove seams
that result from trilinear filtering by changing the surface
parameterization Θ, but do not fix other parameterization-
induced filtering artifacts. We improve texture filtering with-
out modifying Θ.

3. Parameterization-Aware Filtering

The mapping Θ between the surface of an object and a tex-
ture is often nonuniform, meaning that each triangle can
have a different texel density. Additionally, triangles may
overlap in texture space and some of the texture space may
not be used. Most methods for generating mipmaps filter the
texture without regard to how the texture is applied to the
surface of an object. We show that image filtering operations
can be performed directly on the surface of an object rather
than in texture space.

By filtering over the surface of the object, we can enforce
that the weight of a texel is proportional to the surface area
that it covers on an object. Weighting by surface area means
that if a texel is used in two overlapping charts, then the texel
will be given twice the weight of a texel used in a single
chart. Conversely, if a texel is not used on the surface of an
object, it will be given zero weight. All of the filtering is per-
formed in a preprocessing step, which means that the GPU
can draw textured objects using completely standard texture
sampling operations. Parameterization-aware filtering incurs
absolutely no run-time performance penalty and is robust to
degenerate inputs such as triangles that have zero area in ei-
ther object space or texture space.

In typical texture sampling that does not account for pa-
rameterization, the coefficient ch for the sampling filter h is
calculated by evaluating integrals over texture space of the
form

ch =
∫∫

R2
h(u,v)∑

i
ĉib̂i(u,v) du dv,

where ĉi are the coefficients (i.e. colors) of the texels, which
are also associated with basis functions b̂i that comprise
the input image Î, where i denotes the translation of the
basis functions. Although b̂i can be arbitrary, GPUs typi-
cally multiply texture samples by bilinear basis functions for
texture magnification. We therefore use a bilinear basis. In
parameterization-aware filtering, we evaluate filters by inte-
grating over the surface Ω of the object

ch =

∫∫
Ω

h(Θ(p))∑i ĉib̂i(Θ(p)) d p∫∫
Ω

h(Θ(p)) d p
,

where p are three-dimensional points on the surface and the
functions h and b̂i are defined in texture space, as before.

c© 2014 The Author(s)
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In typical texture filtering, no normalization is required be-
cause the integral of h is assumed to be unit, but we need
a normalization term because the domain of h may be dis-
torted when integrating over a surface. In practice, we eval-
uate ch by summing over triangles in a mesh. Each triangle
Tk of Ω has a barycentric basis with the triangle coordinates
(0,0),(1,0),(1,1). Let Γk : R2 → R3 be the map from this
barycentric basis to the triangle Tk. We can then write that

ch =
∑k

∫ 1
0
∫ x

0 h(Θ(Γk(x,y)))∑i ĉib̂i(Θ(Γk(x,y)))∆k dy dx

∑k
∫ 1

0
∫ x

0 h(Θ(Γk(x,y)))∆k dy dx
,

(1)
where ∆k is the absolute value of the determinant of the Ja-
cobian of Γk and is simply equal to the area of triangle Tk.

Because h and bi are typically piecewise polynomial func-
tions that align with the texel grid, we cut the 3D polygons
Tk so that their images Θ(Tk) in texture space intersect only
one texel, which can be done quickly and robustly. Now that
both bi and h have a single polynomial, Equation 1 has a
closed-form expression.

Our method integrates directly over 3D triangles by us-
ing their image in a barycentric space. Equivalently, we can
integrate over the image of triangles in texture space Θ(Tk),
which requires multiplying by |J(Θ−1)|, where J is the Jaco-
bian of a transform, instead of ∆k to account for the change
in variables. We say that our mipmaps are parameterization-
aware, because we weight texels by their parametric dis-
tortion |J(Θ−1)|, whereas standard filtering gives all texels
equal weight. By integrating over the 3D triangles Tk rather
than their image in texture space Θ(Tk), we avoid problems
where 3D triangles in Ω map to degenerate triangles in the
texture, which would make J(Θ−1) undefined.

A beneficial property of our optimization is that our
method does not interfere with the anisotropic filtering that is
performed by GPUs, because we solve a different problem
from anisotropic filtering. First, consider when anisotropic
filtering produces the correct result. If a square texture is
mapped to a rectangle, anisotropic sampling will appropri-
ately stretch the sampling filter by the aspect ratio. In this
case, our method is unaffected by the change in parameteri-
zation and produces the same result as traditional image fil-
tering, because the Jacobian of the parameterization is uni-
form and all texels have equal weights. Therefore, the re-
sult from anisotropic filtering is unaltered by our method and
produces the correct result.

Our method produces different images only when the pa-
rameterization is nonuniform, which is exactly when the as-
sumptions of anisotropic filtering are violated. Excluding de-
velopable surfaces, flattening a surface will always introduce
distortions. Severe distortions within a texel are common at
lower-resolution mip-levels, when texels cover many trian-
gles of the surface. We show an example of nonuniform pa-
rameterization in Figure 2. In the top row of the figure, we
show a flat, triangulated object on the left and its texture on

Figure 2: The top images show the parametric distortion
with object space left and texture space right. The middle
row shows trilinear mipmapping and the bottom row shows
16x anisotropic mipmap sampling. From left to right: box,
PAM box, and PAM constrained trilinear mipmaps.

the right. Although blue and green triangles have equal areas
in object space, blue triangles use the majority of the texture.
This means that the blue color dominates higher mip-levels
with standard mipmap generation. In contrast, our method
gives blue and green colors equal weight in the distance,
while preserving the sharp transition between colors in the
foreground. This effect can be seen in the middle row of
Figure 2, where the plane turns blue in the distance instead
of blue-green. Our method draws the correct color at high
mip-levels in the distance. Comparing PAM box filtering in
the middle and PAM constrained trilinear filtering on right,
the images are similar but PAM trilinear filtering allows less
blue to bleed into the green bands.

In fact, anisotropic filtering and our method are comple-
mentary. Because the projection Φ is only known at run-
time, anisotropic filtering is required to accurately filter sur-
faces with respect to their orientation to the camera. On the
other hand, anisotropic filtering cannot correctly filter when
the Jacobian of Θ changes over multiple triangles. Combin-
ing our mipmaps with anisotropic filtering provides a good
approximation of Θ ◦Φ

−1 integrated over the entire filter’s
support. The bottom row of Figure 2 shows how texture fil-
tering is improved by a combination of anisotropic filtering
and parameterization-aware mipmapping. Anisotropic filter-
ing samples from higher-resolution mip-levels, which im-
proves image quality, but the plane still turns blue in the
distance for the left image. Anisotropic filtering combined

c© 2014 The Author(s)
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Figure 3: We show an example of a high-resolution image
(top left) downsampled using a box filter (top right), op-
timized for bilinear reconstruction (bottom left), and op-
timized for bilinear reconstruction constraining values to
[0,1] (bottom right).

with our method draws crisp lines that correctly appear blue-
green in the distance.

4. Optimal Trilinear Approximation

GPUs store downsampled images as a small set of precalcu-
lated images, called a mipmap, in order to accelerate down-
sampling at arbitrary resolutions. The GPU approximates
colors at intermediate resolutions by trilinearly interpolat-
ing between the color samples of the two closest resolutions.
Our goal is to make the color samples calculated by trilinear
filtering match the color of the input image Î as accurately
as possible, which we do by solving a least-squares opti-
mization as suggested by Kajiya and Ullner [KU81]. Our
contribution is to simultaneously optimize the entire mip-
stack so that we find the optimal representation over all res-
olutions rather than within a single two-dimensional image.
This means that, instead of filtering each image in the mip-
stack separately, the filtered images are all interdependent.
We also incorporate corrections for parametric distortions in
our optimization and explicitly handle the effects that chart
boundaries have on the optimization, whereas Kajiya and
Ullner [KU81] assume that pixels reside on an infinite plane
and can all be treated identically.

Performing a least-squares optimization significantly im-
proves downsampled image quality but can introduce ring-
ing. In Figure 3 we show an example of an image that is

Figure 4: A mipmap can be visualized as a stack of overlaid
images as shown on the left. The alignment between neigh-
boring resolutions is shown on the right.

downsampled followed by upsampling with a bilinear filter.
Comparing the box filter (top right), and least-squares opti-
mization (bottom left) shows that the optimized filter repro-
duces the original image more accurately and appears less
blurry but suffers from some ringing artifacts. As described
by Kajiya and Ullner [KU81], some of the ringing results
in values that are outside of a monitor’s displayable range.
Finding the best values to reproduce an image on a physical
device requires optimizing for values constrained to [0,1].
We show the results of this constrained optimization on the
bottom right of Figure 3. This image appears sharp, with
fewer artifacts than the unconstrained optimization.

The trilinear interpolant is best understood by visualiz-
ing the mipmap as a stack of images as shown on the left
of Figure 4, where basis functions are centered on texels
and are shown as black dots. The stack defines a rectan-
gular solid parameterized by u, v, w and the images are
evenly distributed in w from 0 to n. Given an input image
Î at resolution 2n, the mipmap of Î is a stack of n+ 1 im-
ages I = (I0, I1, ..., In). The images are indexed in order of
the distance at which they are displayed so that I0 has same
resolution as Î and the resolution of Iw is 2n−w. The canon-
ical trilinear basis function is the tensor product of unit tent
functions, and the trilinear basis function, b j(u,v,w), of im-
age w is scaled in u and v by 2w but is not scaled in w. The
index j is a triplet of integers that indicates the translation
and scaling of b j.

We minimize the error of a sample by minimizing the dif-
ference between Î and I over all distances.

min
c j

∑k
∫∞
−∞

∫ 1
0
∫ x

0
∣∣∑ j b j(Θ(Γk(x,y)),w)c j

−∑i b̂i(Θ(Γk(x,y)))ĉi
∣∣2 ∆k dy dx dw.

The system is large, but sparse, so we solve the system us-
ing conjugate gradients implemented in TAUCS [TCR03].
When w is outside of the range [0,n], we reproduce the
behavior of GPUs by sampling from the closest available
mip-level. For w < 0, there is more than one pixel per texel
and the image is magnified using bilinear interpolation. The
weight from the negative values of w is infinite and adds

c© 2014 The Author(s)
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Figure 5: The top right model is drawn with the full 10242 input texture. The row of models directly below that are drawn with
642, 322, and 162 box filtered textures that ignore texels that do not intersect triangles. The bottom row uses PAM box filtered
textures at the same resolutions and does a better job of preserving the original texture.

only to the basis functions of I0, which constrains Î = I0.
Likewise, for w > n, more than one copy of the texture may
exist in a pixel and we constrain In to be the area-weighted
average of Î. Constraining I0 and In dramatically reduces the
size of the linear system we solve. At a small cost to image
quality, we can instead optimize color reproduction for each
mip-image individually by using a bilinear basis instead of a
trilinear basis. If we use box basis functions instead of bilin-
ear or trilinear functions, the linear system is diagonal and
each texel is independent. This means that, for box filtering,
the least-squares solution reduces to the filtering described
in Section 3 and is quite fast.

We show how the trilinear basis functions of neighboring
resolutions overlap on the right side of Figure 4. We use blue
for one resolution and red for half the blue resolution. Solid
lines show the primal grid, dashed lines show the dual grid,
and dots show the centers of basis functions. Because the
dual grids over which trilinear basis functions are defined do
not nest, we must cut triangles by a grid that is twice the
resolution of the high-resolution image (the half-texel grid).

Conceptually, basis functions of color samples from out-
side of the image’s domain can intersect the image. GPUs
define multiple methods for dealing with this problem. In
OpenGL, borders are treated differently based on the wrap
mode of the image, of which three are commonly used. One
approach is to add a one texel border around the image so
that color values are defined for all basis functions that in-

tersect the image. The second and third approaches require
no extra storage by defining the border values to be equal
to values within the image. If the image tiles, border colors
are defined by taking the modulo of a texel’s index, while
nonrepeating images clamp border colors to be equal to the
nearest color in the image. Fortunately, it is simple to match
our optimization to the wrap mode used to sample textures.
The examples in the paper all use the clamp functionality in
the optimization except for Figure 2, which uses wrap mode
in the optimization.

5. Results and Discussion

We compare our parameterization-aware filtering using a
box filter versus naïve box filtering in Figure 5. The input
texture is shown in the top left corner of the image. In this
example, there is relatively little unused texture space, so the
background color has less of an effect on the filtered images.
However, this model exploits symmetry to reuse parts of the
texture and contains overlapping charts. For example, there
are four gray pipes with red grills in the model, but only one
instance of these objects in the texture. Moreover, some of
the triangles in the three-dimensional surface map degener-
ately to lines in the texture.

Our method handles all of these issues properly. The top
row shows the model drawn with its 10242 input texture.
The middle row shows the results from using a standard

c© 2014 The Author(s)
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Figure 6: We show an example model with its 10242 input texture on the left. The subsequent models are drawn with downsam-
pled textures at 642 resolution calculated using a box filter, a box filter that ignores texels that do not intersect triangles and
uses guttering, and our parameterization-aware bilinear filter. Unused parts of the input texture are magenta to illustrate the
color bleeding that occurs with image filtering that does not use information about the model.

box filter and the bottom row shows the results from using
our PAM (parameterization-aware mipmapping) box filter.
From left to right, the resolutions of the textures in the mid-
dle and bottom rows are 642, 322, and 162. One can see
that parameterization-aware filtering significantly reduces
the amount of blue that bleeds into the grey at the top of the
models. Each of the blue lights is inset slightly, and the wall
of the inset is given a disproportionately large fraction of the
texture space. Our PAM filter weights these insets propor-
tionally to their surface area rather than their texture area to
reproduce the appearance of the original model more faith-
fully. We should note that our method even handles the case
when two triangles with different Jacobians overlap, where
a texel will be weighted by the sum of the surface areas that
intersect that texel.

A consequence of using Θ to weight downsampled colors
by how often they appear on a surface is that unused parts
of a texture are given no weight, so that the colors between
charts have no effect on downsampled images. We show an
example of the effect from using different filters on a lizard
model in Figure 6, where we modified the input texture to be
magenta between charts in order to emphasize how the back-
ground color affects filtering. From left to right, we show the
model drawn with its 10242 input texture, and models with
textures downsampled to 642 using a box filter, a box filter
that ignores unused parts of the texture, and our PAM bilin-
ear filter. Standard box filtering does not take into account
which texels are visible on the model and allows the unused
texels colored in magenta to influence the color of texels at
seams. Ignoring unused texels in a box filter approximates
the effect of our parameterization-aware box filter, but is not

Figure 7: Graphs of the errors of textures in Figure 2 mea-
sured at different mip-values from zero through eight. The
filters used are box (blue), PAM box (red), PAM constrained
bilinear (yellow), and PAM constrained trilinear (green).

sufficient by itself. The support of the box downsampling fil-
ter is smaller than the support of the trilinear filter used by
hardware to sample the texture, which means that at least
a one texel border of similar colors must be added around
charts. Our method can directly optimize for trilinear filter-
ing, which takes into account the full support of the sampling
filter, fractional texel coverage, and overlapping/degenerate
charts.

In Figure 7, we show a graph of the errors from using a
box filter compared to parameterization-aware box, bilinear,

c© 2014 The Author(s)
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64 128 256 512 1024
box 0.004 0.004 0.011 0.034 0.134
tent 0.004 0.008 0.037 0.164 0.697

Lanczos 3 0.033 0.151 0.677 3.064 13.58
PAM box 0.030 0.051 0.124 0.338 1.061
PAM bi. 0.166 0.344 0.993 3.703 15.48
PAM tri. 0.411 1.291 4.699 18.606 75.68

Table 1: Times measured in seconds to construct mipmaps
for the lizard from different input resolutions. Traditional fil-
ters that ignore parameterization are shown on top, while
our filters are shown on the bottom.

and trilinear filters for Figure 2. This example utilizes the en-
tire texture, so differences in the graph are entirely from dif-
ferences in parameterization, and not from background color
bleeding. The root mean square error (RMSE) of the approx-
imation measured at different mip-values is shown by solid
lines and the RMSE over all mip-levels is shown by dashed
lines. The PAM bilinear and trilinear filters have noticeably
lower error than the box filter. The bilinear filter has lower
errors at integer mip-levels than the trilinear filter, but has a
slightly higher overall error. One can see that correcting for
parametric distortion significantly reduces the RMSE, espe-
cially at low resolutions.

We show the times taken to calculate mipmaps using a
variety of filters at different input sizes in Table 1, all calcu-
lated for the lizard model on an Intel Core i7-2600k. Calcu-
lation time mostly depends on the number of texels in charts
rather than triangles in the mesh as long as there are fewer
triangles than texels, because triangles are cut to a fine grid.
We should emphasize that mipmap generation only needs
to be performed once, after which results can be stored.
Hence, mipmap generation time should not be an issue for
most applications. Nevertheless, the worst case of solving
for mipmaps that are optimized for trilinear filtering from
a 10242 source image takes slightly more than one minute.
Error graphs suggest that optimizing for bilinear reconstruc-
tion is almost as good as optimizing for trilinear reconstruc-
tion, but takes a fifth of the time. Therefore, we expect most
people to use PAM bilinear filtering instead of PAM trilin-
ear filtering. Parameterization-aware box filtering is very fast
because no linear system has to be built or solved. In mod-
els with parametric distortion, parameterization-aware box
filtering provides a significant reduction in error and costs
only a second of preprocessing time.

An important point is that the filtering operations we de-
scribe in this paper assume a linear color space. Image for-
mats often use only eight bits per color channel, which is
insufficient precision to represent dark colors well. There-
fore, most images are stored in the sRGB color space, which
provides more bits for low intensities. This requires that we
convert images from sRGB to a linear space, perform our

sampling, and convert our results back to sRGB before sav-
ing. For rasterization, we perform all calculations in a linear
floating point format and use the EXT_framebuffer_sRGB
extension of OpenGL to rasterize into the sRGB color space.

6. Conclusions and Future Work

This paper presents a method for calculating downsampled
images for display as textures in three-dimensional applica-
tions. We minimize the difference between a source image
and bilinearly or trilinearly interpolated textures and correct
for distortions introduced by mesh parameterization. We per-
form all calculations as a preprocessing step to improve im-
age quality without changing the renderer or reducing run-
time performance.

There are several extensions to our method that we would
like to investigate. One of the assumptions we made in our
method is that mesh geometry is static. In practice, meshes
are often animated, which means that the optimal texture is
different for each frame of animation. It is trivial to mod-
ify Equation 1 to use the average Jacobian over all frames,
but how often a frame is displayed may not be known in ad-
vance, such as in a game. In practice, most realistic objects
undergo nearly isometric deformations, and our method will
perform well even when using a single, static pose.
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