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Abstract

We propose a method for calculating deformations of models by deforming a low-resolution mesh and adding
details while ensuring that the details we add satisfy a set of constraints. Our method builds a low-resolution rep-
resentation of a mesh by using edge collapses and performs an as-rigid-as-possible deformation on the simplified
mesh. We then add back details by reversing edge-collapses so that the shape of the mesh is locally preserved.
While adding details, we deform the mesh to match the predicted positions of constraints so that constraints on the
full-resolution mesh are met. Our method operates on meshes with arbitrary triangulations, satisfies constraints
over the full-resolution mesh, and converges quickly.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Boundary representationsI.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Hierarchy and Geometric Transformations

1. Introduction

Modeling tools have improved to the point that it is common
for artists to design characters with intricate details directly
encoded in the geometry rather than simulated through tex-
tures. These character models may have hundreds of thou-
sands to millions of vertices. To animate these shapes, each
vertex must be positioned for each frame of animation. Un-
fortunately, directly positioning individual vertices is not
feasible due to the size of these models, so deformation
methods have been developed to reduce the degrees of free-
dom while providing artists with simple, intuitive controls.
Many methods provide a separate structure to control the
deformation, such as a cage [JSW05] or skeleton [Zel82],
but it is difficult to add degrees of freedom to these struc-
tures when finer control is needed; sometimes an entirely
new control structure needs to be created. Additionally, the
deformation tool needs to provide immediate feedback to the
artist, so deformations must be computed in real-time.

An ideal deformation method requires no auxiliary con-
trol structure and allows an artist to add and remove degrees
of freedom at will. Controls should also manipulate the mesh
directly so that animated characters can be constrained to
touch specific objects, like holding a cup. We believe that
the most effective control scheme is to directly constrain the
positions of vertices of the mesh. Furthermore, a deformed

mesh should retain its shape under deformation. The exact
meaning of shape-preserving is ambiguous, but has been de-
fined by previous researchers as locally approximating rigid
deformations [SA07]. However, computing a nearly rigid de-
formation of a mesh requires minimizing a global system of
equations and becomes very slow for high-resolutions.

We approach the problem by allowing an artist to spec-
ify constraints on a high-resolution mesh, but calculate the
large-scale features of the resulting deformation at a lower
resolution. Calculating deformations at a lower resolution
not only increases the speed at which we calculate de-
formations, but also increases the quality of deformations.
Because constraints on the detailed mesh do not directly
map to vertices in the low-resolution mesh, we developed
a method for constraining low-resolution deformations with
high-resolution constraints. Our key contribution, however,
is to introduce a new method of adding details back to the
deformed mesh while conforming to constraints. We add the
details in a way that depends only on local neighborhoods of
vertices and treats all vertices symmetrically.

1.1. Related Work

Surface deformation is a well-studied topic, and we refer the
reader to a recent survey by Botsch and Sorkine [BS08]. The

submitted to COMPUTER GRAPHICS Forum (10/2011).



2 J. Manson & S. Schaefer / Hierarchical Deformation of Locally Rigid Meshes

classic approach for reducing the dimensionality of surface
deformations is to project the space of all possible deforma-
tions onto a smaller, user-defined subspace. The most pop-
ular projection is skeletal deformation, which represents the
position of each vertex as a weighted combination of rigid
transformations controlled by "bones" [Zel82]. Although
skeletal deformation has been applied successfully to anima-
tion, it is poorly suited to representing plastic deformations
that occur in soft materials. Additionally, it can be difficult
to correctly assign weights to vertices in flexible regions be-
tween bones, such as at the shoulders and elbows.

As an alternative to bones, free-form deformations have
been used to represent deformations of organic objects by
warping space. In these methods, a low-resolution control
structure is built to enclose a space that encompasses the
object. Sederberg et al. [SP86] use a simple uniform grid
that smoothly deforms space when vertices of the grid are
moved. Other methods [JSW05,JMD∗07] enclose objects in
a tight-fitting, low-resolution cage to provide more intuitive
and direct control of the shape. Unfortunately, these cages
do not provide fine control of a mesh and provide no mech-
anism for adding more degrees of freedom to control the de-
formation at finer resolutions.

Differential surface editing methods express vertex posi-
tions relative to neighboring vertices. Laplacian surface edit-
ing [SCOL∗04] encodes vertex positions as offsets relative
to neighboring vertices and can introduce undesirable shear-
ing in the deformation because local differences do not rotate
with the surface. Yu et al. [YZX∗04] define positions and
orientations for the triangles of a mesh and then stitch the
triangles back together by solving a Poisson equation over
the gradient of vertex coordinates. Lipman et al. [LSLCO05]
build rotationally invariant coordinates at the cost of solving
two global equations: one for local coordinate frames at each
vertex and another for the vertex locations themselves.

Some methods enforce the one-ring of each vertex to lo-
cally deform as rigidly as possible. Most of these methods,
such as [SA07], iteratively solve a least-squares problem
over the entire mesh. The time required to perform this min-
imization grows quickly with the number of vertices in a
mesh and is expensive to perform over large meshes. PriMo
[BPGK06] minimizes the elastic energy between prisms
connected over the surface of a mesh to produce robust,
rigid deformations. A more recent method [SSP07] reduces
the computational cost of rigid deformations by deforming a
coarse approximation of the mesh. Detail vertices are stored
relative to nearby nodes and move with the local frames of
vertices in the control mesh. In this method, the user ma-
nipulates the simplified mesh rather than the full-resolution
mesh, whereas, in our method, constraints are placed on the
full-resolution mesh and are enforced during expansion of
the collapse hierarchy.

Other methods use the hierarchical structure of meshes
to accelerate global optimization. Shi et al. [SYBF06] use

multi-grid optimization of a discretized Poisson equation to
calculate mesh deformations. Mesh Puppetry [SZT∗07] em-
ploys an alternate approach of using inverse kinematics on
a skeleton to first approximate the deformed mesh, which
is then refined by minimizing a global surface energy to
preserve local shape. This global optimization is acceler-
ated through a cascading optimization that forwards par-
tially computed results between multiple threads. Tools like
ZBrush allow the artist to manipulate an object at multi-
ple resolutions, but these tools require the surfaces to have
subdivision connectivity. In the same line of thought, subdi-
vision surfaces with displacement maps have been used in
surface deformation where deformations are applied to the
control mesh [LMH00, ZHX∗07].

Early work for unstructured meshes [KCVS98] uses only
a few levels of resolution and applies global smoothing
to each resolution using a Gauss-Seidel solver. Guskov et
al. [GSS99] add details at each level of a multi-resolution hi-
erarchy formed by edge collapse operations. However, this
method operates on a large neighborhood (3-ring), is not
symmetric, allows stretching and skewing, and provides only
indirect control of the final surface, because high-resolution
vertices cannot be directly positioned. On the other hand, our
method operates on small regions (1-ring) that we treat sym-
metrically and estimates rigid transformations at each step to
predict and optimize surface positions to meet constraints.

Kilian et al. [KMP07] developed a multi-resolution
method for interpolating between poses. Their method de-
fines meshes as points in shape space and interpolates be-
tween them by finding a shortest path in this space, where
distance is measured by how close the shapes are to being
isometric. Finding a minimal path is a costly optimization
that they accelerated by finding a path for a simplified mesh
and refining the path both by increasing the number of ver-
tices and by increasing the number of interpolatory meshes.

2. Calculating Deformations

Our method uses a hierarchy of mesh resolutions, and we
refer to the resolution by a superscript. If there are N + 1
resolutions generated through N edge collapses, we refer to
the input mesh as PN and the fully simplified (base) mesh as
P0. Our method operates on both an undeformed mesh P and
a deformed mesh Q simultaneously, where Q has the same
topology as P, but different geometry.

We define deformations of QN by specifying the positions
of a few vertices in QN . We then deform Q0 as rigidly as
possible and add back details in a way that approximates
an as-rigid-as-possible deformation calculated directly over
QN . Constraints on vertices of QN do not directly correspond
to vertices in Q0, so we develop a method to predict the po-
sitions of mesh vertices in QN from Q0.

The details that we add back to Q0 must satisfy two prop-
erties: they must meet constraints on vertices in QN and must
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Figure 1: Edge collapses to a vertex during simplification
are reversible. To add back details, vertices are expanded to
form edges.

deform as rigidly as possible. We achieve both objectives
through an inverted edge collapse operation. Figure 1 shows
how collapsing an edge into a vertex can be reversed to ex-
pand a vertex into an edge. Each vertex expansion adds two
triangles and one vertex.

We choose the positions of the deformed vertices affected
by an edge expansion by expanding the undeformed (rest)
mesh P in parallel with the deformed mesh Q. Figure 2
shows the steps of an expansion operation. Our goal is to
determine the deformed positions of the edge vertices ql and
qr that are added during the expansion. We determine their
positions by calculating the best-fit, rigid deformation, Mc,
of the local neighborhood around the vertex pc before ex-
panding pc into an edge. Using the assumption that pl and
pr undergo the same transformation as the vertices in their
neighborhood, we find that ql = Mc pl and qr = Mc pr. We
finish by updating the mesh topology to add two new trian-
gles. If constrained vertices are in the neighborhood of qc,
we use the additional steps in the boxed region of Figure 2.
We move qc so that the positions of the constrained vertices
in the undeformed mesh ci match the constraints in the de-
formed mesh di under the transformation Mc.

2.1. Edge Collapse

As a one-time preprocessing step, we calculate P0 from PN

through a series of edge collapses. While simplifying, we
store the order of edge collapses so that we can later re-
verse the collapses to add details back to the simplified mesh.
There are several metrics that choose which edge to col-
lapse and decide the location of the vertex that replaces the
edge. One popular metric [GH97] minimizes the distance to
the planes formed by triangles in the high-resolution mesh,
but depends on Gaussian curvature and can generate trian-
gles with poor aspect ratios in cylindrical features. Although
these triangles approximate the undeformed shape well, they
do not allow the degrees of freedom required to represent
the shape when it bends. For example, Figure 3 (left) bends
sharply enough that sliver triangles protrude through the op-
posite side of the bent cylinder. Instead, we choose a met-
ric that favors uniform triangulations [ACSE05] at all levels
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Figure 2: An expansion operation consists of the three steps
that are not boxed. First we calculate the best transforma-
tion Mc from the one-ring of pc in the rest mesh to the de-
formed mesh. Second, we apply Mc to pl , pr to calculate the
deformed positions ql , qr. Finally, we update the topology of
the surface. When constraints exist, we use the steps in the
boxed region to modify the position of qc such that applying
Mc to ci matches di.

of the hierarchy, and allows a more natural bending of the
shape, as shown in Figure 3 (right).

We define the error function for a vertex k as the summed,
squared distance to all points on the triangles that touch that
vertex. We use the notation that N (k) is the set of triangles
that touch vertex k. The error at a point x is then equal to

Es(x) = ∑i∈N (k)
∫

s
∫

t |pi(s, t)− x|2 dt ds

= ∑i∈N (k)

(
|x− p̄i|2 + 1

12 ∑
3
j=1 |pi, j− p̄i|2

)
∆i,

where pi(s, t) is a point on the ith triangle that is parameter-
ized by s and t, pi, j is the jth vertex of triangle i, ∆i is the
area of the ith triangle, and p̄i is its centroid. The minimum
of this error function is given by

xmin =
∑i p̄i∆i

∑i ∆i
,

and we define the error associated with this vertex as
Es(xmin). Suppose that an edge has the end points pl , pr
and will be replaced by the vertex pc. We define the error
function of the edge as the sum of the error functions of pl
and pr. We then place the vertex pc that will represent the
collapsed edge at the minimum of the edge error function
in a greedy fashion, collapsing edges with the smallest error
first. We apply this process until we reach the target number
of vertices.

An important question is then, "How many vertices should
one use in the simplified mesh?" Lower numbers of vertices
make the model deform more like a solid and increase the
speed of convergence, whereas higher numbers of vertices
represent fine features, such as fingers, better. Several fac-
tors influence the choice and, in the end, a human must de-
cide how many simplified vertices to use on a case-by-case
basis. For most of our examples, we have found that 200 ver-
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tices represent movements well. We discuss the effect of the
resolution of P0 on the resulting deformation in Section 3.

2.2. Global Optimization

At the base resolution, we solve for the best rigid defor-
mation of P0 using As-rigid-as-possible Surface Modeling
(ARAPSM) [SA07]. The only difference between our opti-
mization and ARAPSM is that ARAPSM uses a single res-
olution, whereas we constrain vertices of QN but optimize
Q0. This complicates the optimization because there is no
direct mapping between vertices in QN and Q0. Lack of a
direct mapping means that a simplified vertex may be influ-
enced by multiple constrained vertices in QN , which means
that we cannot use hard constraints.

Instead, we add a constraint energy Ec to the rigid de-
formation energy Ed of ARAPSM. The constraint energy Ec
measures the distance between the constrained vertices in the
deformed mesh dk ∈ QN and their predicted positions. The
position of dk relative to qi ∈ Q0 is predicted by the position
of its dual, constrained vertex ck ∈ PN relative to pi ∈ P0

under the rotation Ri, where Ri is the best-fit rotation around
the vertex pi between the rest and the deformed meshes. Be-
cause the relative positions between points is invariant under
translation, Ec can be written as

Ec = ∑
i

∑
k
|(dk−qi)−Ri(ck− pi)|2.

The variable i indexes the vertices in Q0, and k indexes the
constrained vertices in QN that are under the influence of qi.
The collapse hierarchy forms a binary tree and we consider
a constrained vertex ck to be under the influence of pc if pc
is an ancestor of ck. Note that many vertices of P0 may influ-
ence the position of ck while we use only the direct ancestor.
Because our collapse metric favors uniform triangulations,
the influence of a vertex tends to fall off smoothly, and we
have found that a fast approximation of influence by ancestry
works well. We find the best deformation under these con-
straints by minimizing Ed +wEc, where w is a weight that
we set to 100.

We use the same alternating minimization described in
ARAPSM to minimize the deformation and constraint en-
ergies. We alternately solve for rotations, then hold the ro-
tations constant and solve for vertex positions that minimize
the energy.

2.3. Expansion

After deforming the simplified mesh from Section 2.2, we
expand the surface to full-resolution, while preserving the
nearly-rigid properties of the deformed shape. We estimate
that local details near a vertex pc ∈ P` move rigidly with the
corresponding local neighborhood around qc ∈Q` in the de-
formed mesh because as-rigid-as-possible deformations are
almost rigid at small scales.

Figure 3: The deformation of a cylinder collapsed to 100
vertices using a plane distance metric [GH97] (left), and us-
ing a point distance metric [ACSE05] (right). The top shows
the simplified meshes, and the bottom shows the result after
adding details.

We use the local transformation Mc to calculate the ver-
tices of the newly expanded edge as qr = Mc pr and ql =
Mc pl (see Figure 2). The rigid transformation Mc consists of
a rotation Rc and a translation Tc, such that Mcx = Rcx+Tc,
where x and Tc are column vectors. We find Tc in terms
of Rc by subtracting the centroid of the neighboring trian-
gles [SMW06]. The translation component is then

Tc = q̄−Rc p̄,

where

p̄ =
∑ j∈N (c)

∫
s
∫

t p j(s, t)dtds

∑ j∈N (c)
∫

s
∫

t dtds
=

∑
n
j=1(pc + p j + p j+1)∆ j

∑
n
j=1 ∆ j

.

In the right-hand formula for p̄, we make the simplifying as-
sumption that vertices in the one-ring are ordered circularly
from 1 to n and that ∆ j is the area of the jth triangle. The
formula for q̄ has the same form as p̄, but in the deformed
mesh.

We calculate Rc as the minimizer of

min
RcRT

c =I
∑

j∈N (c)

∫
s

∫
t
|(q j(s, t)− q̄)−Rc(p j(s, t)− p̄)|2dtds.

The best-fit rotation is found through a singular value de-
composition (SVD) of the matrix

Bc = ∑
j∈N (c)

∫
s

∫
t
(p j(s, t)− p̄)(q j(s, t)− q̄)T dtds.

This matrix can be written in closed form, using the notation
that Pj1, Pj2, and Pj3 are the three vertices of triangle j in
the rest mesh, and P̂jk = Pjk− p̄. We use a similar notation
for the vertices of the deformed mesh, Q, so that

Bc = ∑
j∈N (c)

∆ j

24
(

P̂j1 P̂j2 P̂j3
) 2 1 1

1 2 1
1 1 2

( Q̂ j1 Q̂ j2 Q̂ j3
)T

.

submitted to COMPUTER GRAPHICS Forum (10/2011).



J. Manson & S. Schaefer / Hierarchical Deformation of Locally Rigid Meshes 5

Figure 4: This grid of images compares deformations produced by a variety of methods in challenging configurations. The
constraints in the first row are moved purely by a translation, while the remaining rows contain a bend or twist. The columns from
left to right are the resulting meshes after performing (a) no deformation, (b) PriMo [BPGK06], (c) thin shells with deformation
transfer [BSPG06], (d) gradient based editing [ZRKS05], (e) Laplacian-based editing with implicit optimization [SCOL∗04],
(f) rotation invariant coordinates [LSLCO05], (g) our method.

We compute Rc using the singular value decomposition
of Bc = UcΣcV T

c such that Rc = UcV T
c [AHB87]. When

det(Rc)< 0, Rc is a reflection, so we negate the last column
in Uc.

While adding details, we also need to ensure that con-
straints on the positions of detail vertices are satisfied. We
do this by optimizing local neighborhoods so that we modify
low-resolutions first. We show the full expansion operation,
including the constraint matching steps, in Figure 2. If there
are any constrained vertices under the influence of qc, we
modify the position of qc before expanding qc into an edge.
We set the position of qc to minimize the distance between
the predicted positions Mcck of the constrained vertices and
their target positions dk. This energy is given by

Ex = ∑
k
|(dk− q̄)−Rc(ck− p̄)|2.

The formula for Ex is nearly the same as the formula for Ec,
except that rather than summing the error over all vertices
in the mesh, we only add the contribution from pc. Another

difference is that Ex is calculated relative to the centroid p̄
rather than pi. Using p̄ instead of pi in Ex produces smoother
deformations during the expansion, because the translational
component is computed over the entire one-ring rather than
simply using the central vertex. After substituting the formu-
las for p̄ and q̄ into Ex, it is straightforward to differentiate
Ex and solve for the qc that minimizes Ex. The minimizer of
Ex, with m constraints and n neighbor vertices, is

qc =
3
m

m

∑
k=1

dk−
∑

n
j=1(q j +q j+1)∆ j

∑
n
j=1 ∆ j

+Rc(p̄− 3
m

m

∑
k=1

ck).

Once we have calculated the position of qc, we update Rc by
recalculating Bc and performing an SVD of Bc again. We can
iterate this process of solving for qc by alternately solving
for qc and Rc, but have found that using a single iteration is
sufficient. We then determine the positions of ql and qr as
ql = Rc pl +Tc and qr = Rc pr +Tc.
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Figure 5: A comparison of the bumpy plane example using
our method at 200 (top) and 500 (bottom) vertices in Q0.
The low-resolution meshes are shown on the left, with the
full-resolution meshes on the right.

3. Results

Our method produces deformations that look nearly as-
rigid-as possible by calculating an as-rigid-as-possible de-
formation over a simplified model and adding approximately
rigidly deformed details. This approach greatly reduces the
complexity of calculating a deformation while producing
high-quality results. Unfortunately, the perceived quality of
a deformation is subjective. We provide a qualitative com-
parison between some deformation methods in a series of
examples shown in Figure 4 that have been used in a survey
of deformation methods [BS08] to highlight difficult situa-
tions where methods often fail to produce reasonable defor-
mations.

In these standard examples, our method produces reason-
able deformations with simplified meshes containing 200
vertices. For the cylinder, PriMo is able to prevent com-
pression of the cylinder by bending the shape outward, as
does our method. One may notice that the bumpy plane does
not match the orientation of the bottom constraints with our
method in the comparison diagram. This is an artifact of the
constrained region being too thin for the resolution of our
mesh with 200 vertices. Figure 5 shows the low-resolution
meshes at 200 and 500 vertices for the bumpy plane and the
resulting deformations. With 500 vertices, the mesh resolu-
tion is high enough that the constrained region is almost a
triangle in thickness, and can constrain the orientation of the
plane rather than just its position. The bumpy plane, twisted
bar, and cactus behave in a plausible fashion for our method,
while the methods other than PriMo show obvious artifacts.

Our method also produces nice deformations for complex
shapes. Figure 6 shows the complex surface of a dragon that

Figure 6: Deformations of a dragon (bottom, middle) from
the rest pose (top) are shown with constraints shown as yel-
low spheres.

we deformed using our method. As can be seen from the
control points that are displayed as yellow dots, few con-
straints are required to produce a natural pose.

The global, alternating minimization for the deformation
of the base mesh is much slower for high-resolution meshes
than it is for low-resolution meshes. If the base mesh is the
same as the input mesh, our method is the same as ARA-
PSM [SA07], because we use ARAPSM to optimize the base
mesh. The difference between ARAPSM and our method
is that ARAPSM operates only on high-resolution meshes,
whereas we add details to a base mesh that we optimize
quickly. In part, global minimization of a detailed mesh is
slow because each iteration takes a long time. The time taken
to calculate best-fit rotations and to back-substitute the LU
factorized global system is proportional to the number of
vertices in the simplified mesh. For the dragon model, we
measured that the time to calculate an iteration of the global
deformation over 100 vertices was 0.30 milliseconds. For
1000 vertices the time was 3.1 milliseconds, the time for
10,000 vertices was 32 milliseconds, and the full mesh of
112,776 vertices took 0.35 seconds for an iteration. Note that
the time taken to calculate a deformation of the base mesh
is independent of the number of constraints placed on the
model.

Another reason for slow convergence of ARAPSM is the
large number of iterations required for the solution to con-

submitted to COMPUTER GRAPHICS Forum (10/2011).



J. Manson & S. Schaefer / Hierarchical Deformation of Locally Rigid Meshes 7

Figure 7: A single global iteration is allowed per expansion.
The log10 RMS error is plotted vs. the time to deform the
dragon.

verge. Figure 7 shows the root mean square (RMS) error
of vertex positions in the fully-expanded, deforming mesh
compared to vertices in the converged mesh, normalized by
the diagonal of the mesh’s bounding box. We calculated the
time taken to deform the dragon with different resolution
base meshes. The plot for the full mesh of 112,776 vertices
is shown in yellow, 10,000 vertices is shown in green, 1,000
vertices is shown in red, and 100 vertices is shown in blue.
The vertical axis shows the log10 of the RMS error, and 10−7

error is at the limit of floating-point precision. After 400 it-
erations, the mesh with 100 vertices has a thousandth of the
error that the mesh with 1000 vertices has and a hundred-
thousandth of the error of the full-resolution mesh. The time
to converge is the product of the time to perform an itera-
tion and the number of iterations required, which means that
using fewer vertices is highly desirable.

For simplified meshes, a single global iteration takes far
less time than the expansion of the simplified model to its
full resolution, so we can greatly speed up the rate of con-
vergence by calculating multiple global iterations per expan-
sion. We measure the time taken to expand the model, and
run as many iterations over the simplified mesh as possible
in that period of time. If the time to expand is e and an itera-
tion over the simplified mesh takes s time, the update interval
is bounded by 2e+ s.

We plot convergence as a function of time using this tech-
nique on the dragon model in Figure 8. Notice that base
meshes with few vertices converge very quickly. Our method
converges quickly because we are able to run many global
iterations in the time it takes to do one full expansion. The
time to fully expand the model from 100 vertices with no
constraints is 0.33 seconds, and we were unable to measure
a difference in time between expanding with no constraints
and with 30 constraints distributed evenly over the surface

Figure 8: Multiple global iterations are allowed per expan-
sion, up to how long the expansion takes. The log10 RMS
error is plotted vs. the time to deform the dragon.

of the dragon. The effects of slow iterations and requiring
many iterations compound to make ARAPSM unfeasible to
use for high-resolution meshes. Even after several minutes,
the complexity of optimizing the full dragon mesh means
that ARAPSM is unable to converge, whereas our method
can run several iterations very quickly and converge to a rea-
sonable result in less than a second.

Optimizing a low-resolution mesh before adding back
details confers another benefit besides speed. As-rigid-as-
possible surface deformation methods minimize a thin-shell
energy. Under large deformations, this energy allows the sur-
face to fold and pinch in ways that appear unnatural in a
solid object. However, when the discretization of the surface
is coarse, the edge connectivity is closer to that of a tetra-
hedralization. By simplifying a model, we approximate the
results of a tetrahedralization while performing only surface
operations. We then add back details such that we maintain
near-rigidity while enforcing vertex constraints.

Figure 9 shows an example of this effect using a base
mesh at 200, 500, 2000 vertices, and at full-resolution of
15,002 vertices. The undeformed model is shown on the left,
the top row of images shows the low-resolution mesh, and
the bottom row shows the resulting mesh after adding back
details. The right image shows the result after performing
as-rigid-as-possible deformation on the unsimplified mesh,
and is equivalent to ARAPSM. Notice that the stomach of
the armadillo man collapses in the high-resolution mesh, but
that the low-resolution mesh does not collapse and deforms
more like a volume. As the resolution of the base mesh in-
creases to the right, the object appears more like a thin-shell
and our method approaches ARAPSM.

Although we use multiple mesh resolutions to calcu-
late a deformation, our method is not a multi-grid solver
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Figure 9: The rest pose of the armadillo man is shown on the left, followed by deformations with base meshes of 200, 500, 2000
vertices, and unsimplified. Using more vertices makes the mesh deform more like a rubber skin.

for as-rigid-as-possible deformations. A multi-grid ap-
proach would speed up convergence of a deformation, but
would converge to the same undesirable thin-shell solution,
whereas the deformation calculated by our method makes
the object act more like a solid as the number of vertices in
the base mesh decreases.

Conceptually, the edge collapses in our hierarchy form a
nearly balanced binary tree because our collapse metric fa-
vors a uniform triangulation, so the edge collapse tree for n
vertices will have an approximate depth of logn. For every
level of the tree, any position constraint is included in at most
one optimization because there is a unique ancestor for each
level. Therefore, the time taken to optimize m constraints
during expansion is O(m logn). Since each expansion takes
constant time to update mesh topology, the time taken to ap-
ply constrained details to the mesh is O(n+m logn). Hence,
we can deform even massive meshes with our method, be-
cause expansion time is nearly linear in vertices, and the
time to optimize the simplified mesh is independent of the
number of vertices in the detailed model.

4. Conclusions and Future Work

In conclusion, our surface deformation method meets vertex
constraints of a high-resolution mesh while preserving local
rigidity in the deformed model. Additionally, we calculate
deformations quickly enough for artists to interactively de-
form models with hundreds of thousands of triangles. Artists
can add to or remove constraints from models that have al-
ready been deformed and can manipulate surfaces with arbi-
trary triangulations. Although we deform the low-resolution
model with an as-rigid-as-possible deformation method, our

method of adding details to a low-resolution model does not
depend on how the low-resolution model is deformed. For
example, it is possible to deform the low-resolution model
using skeletal deformation and add back details with our
method to reduce artifacts from poor skin weights.

Our method has several benefits over directly optimizing
a full-resolution mesh, but has some limitations as well. One
problem is that the resulting deformation depends on the
resolution of the simplified mesh. Low resolutions can po-
tentially miss important features of the deformation when
constraints are close together, but high resolutions will take
longer to optimize. We currently do not have an automatic
method for choosing a base-resolution, and leave resolution
as a user-specified parameter.

Another limitation is that the choice of edge-collapse met-
ric has a strong influence on the resulting deformation, be-
cause it affects both the simplified mesh and the order in
which we add back details. We chose a metric that favors
uniform triangulations so that the mesh will deform uni-
formly, but when bends should occur at clear joints in the
model, the error metric by Garland and Heckbert [GH97]
works well. We may be able to take advantage of the ef-
fects that different edge collapse metrics have on our method
if an artist provides example poses that indicate how joints
should bend. When this is the case, we could guide the edge
collapses using a deformation-aware collapse metric such
as [LS09] to produce better deformations.

There are also a few details of our method that we feel
could be improved. A more subtle problem with our col-
lapse metric is that input models that are symmetric can be-
come asymmetric during simplification, which can produce
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unexpected results. There is also a subtle problem during ex-
pansion operations. When we attempt to satisfy constraints
during expansion operations, we approximate which vertices
are affected by the constraints by using ancestry in the col-
lapse tree. In reality, constrained vertices influence more ver-
tices in the simplified mesh than just their ancestors, and the
amount of influence falls-off with distance. It would be inter-
esting if we could approximate the influence of vertices bet-
ter, but as we calculate the contribution of more constraints
per expansion, it may become difficult enforce a low bound
on computation time.

Our method may still not be fast enough to be interac-
tive for extremely large models. However, we can take ad-
vantage of the multi-resolution nature of our method and
perform vertex expansions until a time-limit has expired to
maintain a high frame-rate during interaction. The partially
expanded mesh approximates the full-resolution mesh and
allows editing of truly massive models. It may also be possi-
ble to reduce the cost of estimating rigid transformations in
our method by exploiting temporal coherence in calculating
the SVD and reusing previously computed results as done in
FastLSM [RJ07].
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